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The first fundamental problem of elasticity theory for a spherical cat iia an elastic space 

is solved in P] in a general formulation, Practical use of the solution in @.I is rather 
difficult because of the indeterminacy of one of the constants in the expression for the 

stresses and displacements; the available conditions therefore turn out to be inadequate 
for its determination, 

An analogous problem is solved in the present paper by a method different from that 

in cl]. The investigation is based on the integral relations obtained by applying the trans- 

formation of p-41 to the axisymmetric elasticity theory problem for a sphere. The 
expressions for finding the functions which solve the first fundamental problem of elasti- 

city theory also contain an indeterminate constant. The value of this constant is found 
by comparison with the solution obtained in p]. 

As an illustration, a spherical cut under symmetric and antisymmetric uniform loads 

applied to its edges is examined. Closed formulas are obtained to determine the normal 
and tangential stresses outside the cut on a sphere whose radius equals the radius of the 
cut, 

1. The general solution of an axisymmetric problem of elasticity theory in spherical 
coordinates can be represented in terms of two analytic functions Fr (I;) and F, (5) of the 

complex variable 5 = pe’a 

fR’ z ;z~+fJ&+‘] ( (5 - 2) d5 

v-a- t) (F, - CY 
WI 

Assuming that 

Fl = a,, (n + 1) in, Fz = bn I;” or Fl = c, n~-n-l, F8 = d,, g-n-L 

we obtain the familiar formulas for the solution of the interior and exterior problems, 

respectively, on the axisymmetric straining of an elastic sphere 153. 
The expansions of the functions F, and Fz at infinity have the form 

Fl = c&2 + c._~<-~ $ ..el Fs = d-, 5-l + d_z c-‘+ 1.. ti -3) 
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The constant can be determined in terms of the principal vector of the forces Z* 

applied to a domain isolated within the space containing the loading surface 

i* = t+Jr (I - V) c-2 (f .4) 
Let us consider the elasticity theory problem for a space with a spherical cut of radius 

R = 1 and angle a (Fig. 1). 

The axisymmetric normal p+ (e), p- (0) and tangential q+ (e), q- (0) loads are applied 
to the edges of the cut. For R = 1 we have 

0 

e 

s Re [B* (a) t+*] v2 (co9 6 - co9 0) d6 (1.5) 
0 

at the edges of the cut (o = ei8). 
Here A (Q, B (t) are analytic functions of the variable 5 defined by the expressions 

A (5) = C2F,” - 2 (1 $- V)F, + CV,” 

B (5) = 5 [ L2F,” + 35F,’ - (1 - 2v) F, + 52~~” + SF,’ - F,]’ 
(1.6) 

By the condition of boundedness of the displacements on the cut boundary R = i, 

ir 1 
9 = a ,the following conditions must be satisfied 

A (5) = KI 1 5 - c \-6 

B (5) = K, 1 5 - c I-'-' 6 < 3/2 (1.7) 

I/ 
for A (5) and B (5) . 

I 
Here K1, K, are some positive constants, and c is either 

I of the ends of the cut. 
\ 
\ 

The expansions of A (E) and B (5) at zero and infinity 

are determined by the behavior of the functions F, and F2 

;i; 4 (5) = 0 C’), p?-rB (5) = 0 V) 

Fig. 1 lim 4 (0 = 0 (6), 
(1.9) 

540 
FrnOEI (5) = con& + 0 (5) 

-+ 

For known A (5) and B (5) the function F, (5) can be determined from the differen- 
tial equation 

B - <A’ - A = 2G2F1” + 4 (1 + v) <PI’ + 2 (1 + v) p, (1.9) 

Taking account of (1.4), we find from (1.9) 

lim(B--@l’--A)-_-$$ 
6- 

+ 0 (CC”) (1.10) 

We now resolve the problem under consideration into its symmetric (p+ = p- = p, 

q’ = q- = q) and antisymmetric (p+ = - p- = p, q+ = - q- = q). components. 

2. For symmetric loading of the cut conditions (1.5) become 

- q sin 0 = f + 1 Re I& (a) .t’hi8] r/2 (COS -6 - CO9 0) a’ 

a 

(2.1) 

(2.2) 
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Solving the integral equations (2. l), (%. 2). we obtain 

Here 

Re A+ellzi’ = gl (6), Re A-e’lZiB = - gl (tlJ 

Re B+e’hiB ~-2 g: (fJ), Re B-e’izia = - gA (6) 

a 

g1 (W = & c 
p (8) sin 0 rlfl 

I/2 (co9 0 - co9 6) ’ g1(6) = DC- 6) 
;, 

(2.3) 
(2.4) 

(2.5) 

a 
rl d 

g2 (6) -= d6 sin-lt) a 
q (0) sin‘! 6 d0 

2 (cos 0 - cos ti) ' 
g2(6)=g,(-l?) (2.6) 

Problems (&3),(2.4) can be reduced to the corresponding problems of linear conjuga- 

tion. In particular, to solve problem (2.3), we introduce into S- the function Q related 

to A (6) by the expression Q (5) = A (5-l) . 
Relations(2.1) now become 

e/i+ + a- = gLe’hi@ t aA- + Q+ = - gle’fzia (2.7) 

Problem (2.7) can be solved by known methods [6]. Recalling (1.7). (1.8), we obtain 

0 = eiz, x(&=1/(5-4(6--a) ? _ :i:-=’ 
Similarly for (2.4) we obtain 

we can find the relationship betbeen a,, and b, from (1. 9) and (1.10) 
0 

b. + a0 (2 cos CL - 1) = Y& c [go + gz (a + I- 2~0s a)] a-‘/‘do (2.10) 
c 
n 

In order to find the second condition for determining a, and b,, we can proceed as 

follows. Following cl], we introduce the analytic function A, (t), where 
0 

s Re AI (0) e’izia d6 

o 1/2 (cos 6 - cos 0) 
(0 <a) (2.11) 

pr = p cos e - q sin 6 (2.12) 

The method of determining A, (5) is described in p]. The appropriate calculations 
yield 

(2.14) 

By virtue of (2. lP), the following condition must be satisfied on the sphere R = 1 : 

Re s A(6)cose+2(c0s6-c0se)B(6)--1(6) eI,zcede=O 

V2 (CO~~~-COS e) 
(2.15) 

0 



Axisymmetric loading of a space with a spherical cut 175 

Condition (2.15) together with (2.10) enables us to determine the constants u,, and bo. 
To illustrate, let us consider a spherical cut with the angle a under the uniform pres- 

sure P. Applying (2.3)-Q. 6). we find that 

Re A+e’fzia = p cos #i/2, Re A-e%i43 = - p co3 612 

for R = 1 . 
Re B+e%i8 = (-J . 

We determine A (5) and B (5) from formulas (A. 8), 

B (6) = bo 6 (5 - ‘1 
X4(E) ’ 

bo + a0 (2cos a - 1) = --$ sin a (I+ co3 a) 

We now have t r 

I,=$ 
s 

A (5) 4 

7 I/G-wt-Ij ’ 
la = y$- 

s 
B (5) 1/K - ‘1 (F, - ii 4 (2.16) 

F 

Integrals (2.16) can be computed by the Muskhelishvili method 

z1=f { Im In [X(a, t)+a-l?co38]- 

-~l’n~~X(~,f)+R--~ose]+a0Im sinLiTa t) 
. 

Zt=bo Im 
iI 

cosa-1 (a- i)(a-2) 
23insa X(a,t)--Re zsinxaX(a t) 9 1 

Here 
x (a, t) = Jf(a -q (a 2) = v HZ - 2az + a2 ) ;7 x (a, t) = II 

Similarly, (2.13) enables us to find A1 (5) , and 
t 

ZS= (ni)-l A1 [(f-t) (~-_]-‘lzd~= 
s 

=-$Im{(l-$1 X(a, t)+tln[X(a, t)+a--zz] - 

Co36 
- ~ln[aX(a,L) +&I--co36]+(1 + casa)&} 

I 

Utilizing (2.151. after some simplifications, we obtain 
2P 

- ysi3 a 
( 

sin2 + +cose +b~sinZ~(i+co36)+ao3inZaco36=0 (2.17) 
) 

Equation (2.17) is satisfied only if 

2P (10 = 7 co3 %+sina, b. = 
‘2P 
7 Sing a 

It is easy to see that for given a, and b, condition (a. 15)is satisfied identically. The 

stresses over the portion R = 1, 6 > a of the sphere can be determined in closed form. 
Appropriate calculations yield 

2P 
QR=T arctg 

[ 

v/Zsina/2 sinac03a/2 

1/cosa--case - Jf2(c03a- case) 
I 

4p3in3a/2 i+c03e 
z RB=- fisin0 1/2 (co3 a - co3 e) 

In the limiting case of a plane cut, (2.18) become the known formulas 
distribution in a plane coincident with the plane z=O of the cut f7]. 

(2.18) 

for the stress 
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For antisymmetric loading, calculations analogous to those above yield: 

Applying thq(e results of [z], we obtain 
a 

Here gl, & and & are determined by (2. 51, (&6), (d, 141, respectivelyy. 
The constants a, and b,, can be determined from a joint analysis of (2.10) and condi- 

tion (2.15). 
To illustrate, let us consider the loading of a cut by an antisymmetric uniform pressure 

p. In this case 

He~fe’h ia = ReA- i/z ie = P cos I/& R&” &“b i8 = Re B- ,‘k ia = 9 

Formulas (3.1) and (3.2) yield 

After some simple calcuiations, (2.15) gives us the equation 

Ifa cos4 a = a, cos 0 sin2 a -+- b, sin2 a / 2 (1 + cos 8) 

The constants a,and b, are 

b, = p co52 a / 2, 4a, = - p sina a 

It is easy to see that condition (3.3) is satisfied, The stresses oRand ‘~~a are determined 

for R = 1 , 0 > a by the dependences 

p sink u p sin3 a co@ ai2 
‘IR =- 

4Jf2 fcos a - co9 Cl) ’ %RB = sin 0 If 2 (co9 a - CO9 8) 
(1 +cOsE3f 

Passage to the limiting case of a plane slit is nor valid in this case, since in the limit 

outside the cut the stress o, in the plane of the slit is equal to zero, and the integral 
DJ 

taken in this plane has a constant value. Hence, the antisymmetric loading of a plane 
slit must be considered separately [S, 93. 
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The influence of slight camber of the middle line of a transverse section on the natural 

vibrations frequency and mode of an infinitely long plate, clamped at the endfaces, which 

is vibrating under plane strain conditions, is examined on the basis of perturbation theory 

p-41 in the speciat case when some frequency of vibration of the uncambered plate is 
double. The initial system is degenerate FZ], a “small imperfection can cause a Large 

effect” for it ( &if. Vol. 1. Sect. 149). The problem under consideration is a particular 
case of the problem of the influence of a small change in shape on the vibrations of a 

shelf having multiple natural frequencies. 

A supplement to an assertion of the author of [S] on the separation of natural shell 
vibrations into quasi-transverse and quasi-tangential is also contained herein. 

I, To determine the mode and frequencies in the case under consideration, we have 
from the general equations of shell vibrations [S] 

(~‘*‘$-1C,A 0) -i_ *” A@‘) (v, u?) = h (U, W) 0.Q 
A@f = ii “*j<“’ fi v=O, I,2 i, j=1,2 

Let us present expressions for the nonzero elements of the matrix operators At@ 


